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The shock adiabatic curve of quasi-transverse shock waves in a slightly anisotropic elastic medium is considered. For waves whose 
intensity is not too high, the elastic potential of the medium @ is represented by an expansion in series in the deformations and 
the change in entropy. Shock waves, when only the principal terms remain in the expansion of a, which reveal the effects of 
non-linearity and anisotropy, have been investigated in detail in previous publications, but the effect of a change in entropy on 
the elastic properties of the medium was not taken into account. Below, these results are taken as the zeroth approximation and, 
using the method of linearization about the zeroth approximation, corrections due to succeeding terms of the expansion of Q 
are obtained. A model of a slightly non-linear elastic medium is considered in detail when, in addition terms in the form of cross 
products of the deformations and the entropy and the square of the change in entropy are taken into account in the expansion 
of @. For such a medium, the changes in the form of the shock adiabatic curve and the position of the evolution parts in it; due 
to considering the effect of a jump in entropy in the shock wave, are obtained in explicit form. 0 2003 Elsevier Science Ltd. All 
rights reserved. 

1. INITIAL RELATIONS 

The zeroth approximation. The relations on shock waves in elastic media have the form [I] 

[SD/au,] = pOW2[uil, i = 1,2,3 (1.1) 

[~I = - ‘/2 [a~laui][Ui] + (a~laui)+[mj] c4 

[II;] + W[uJ = 0 W) 

Here ui = &&Ix, vi = aWi/at, &vi/at, wi is the displacement vector of points of the medium, &D/&i 
are the components of the Piola-Kirchhoff stress tensor, and x is the Lagrange coordinate, for which 
we take the Cartesian coordinate normal to the front in the initial state, while the x1 and x2 axes lie in 
the plane of the wave front. Here and henceforth summation over repeated subscripts is assumed. The 
quantities ui characterize the deformation of the medium for one-dimensional motions and, together 
with the components of the velocity vi, experience a discontinuity on the shock wave front, p. is the 
density of the medium in front of the shock wave, Q = poU(ui, S) is the elastic potential of the medium, 
i.e. the internal energy (in the actual state), referred to unity of the initial volume (before the passage 
of the shock wave), U(U~, S) is the internal energy per unit mass, S is the entropy of unit mass of the 
medium, and Wis the Lagrangian propagation velocity of the shock wave W = dx/dt. The square brackets, 
as usual, denote jumps in the quantity enclosed with them: [A] = A’ -A-, where A- is the value in 
front of the discontinuity and A+ = A is the value after the discontinuity. 

The following approximate expression was used in [2] as the elastic potential cD(ui, S) when describing 
quasi-transverse waves of small amplitude in slightly anisotropic media 

@‘O(u, S) = $2 + $4; + br2u, + $” + $4; - UT) -t pJ,(S - S,), r2 = Ll;+ u; (1.4) 

Heref, g, d, b and h are constant coefficients of the expansion, which have the meaning of the elasticity 
constants of the medium, and it is assumed that the coefficient g, corresponding to the anisotropy, is 
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much less than the other coefficients (if we assume that the values of the deformations and their changes 
are of the order of E, the effects of the anisotropy and non-linearity on the stress will be of the same 
order, if g - c’). The quantities To = T-, So = S- and p. = p- correspond to the state before the 
discontinuity. In expression (1.4) only terms of higher order than the second remain; these are important 
for describing the principal non-linear effects in quasi-transverse shock waves. There are no terms here 
of higher order infinitesimals, in particular, terms containing the product of the change in entropy by 
some function of ui, responsible for the effect of a change in entropy on the mechanical properties of 
the medium. There are also no anisotropic terms containing ui at higher powers than the second (a 
consequence of the assumed smallness of the anisotropy) and no terms containing CL: -I- L$ in powers 
higher than the second (due to the assumed weak non-linearity). 

We will call the relations on the discontinuity (1.1) with elastic potential @ = <Do and consequences 
of them the zeroth approximation. In particular, in this approximation we have the following equality 
for quasi-transverse waves for all ui and ~2 [2, 31 

Lu,l = -d-f y b E21 (1.5) 

It enables us to eliminate u3 from the first two relations of (1.1) and to consider them separately, 
assuming that Q” is a function of ur and u2. Here, Eqs (l.l)-(1.3) retain their form, except that we must 
put i = 1,2 and the function CD0 must replaced by 

E&u,, U.2, S) = $2 + ;(*: - UT) - $r4 + poTo(S- So), 
2b2 

K= KFh 
The shock adiabatic curve has been obtained and investigated in this zeroth approximation in [2,3]. 

Its projection onto the (ul, u2) plane has the form 

Bo(u,, u2)=(r2-R2)(U1U2- 112UI) +2@ - U,)(u*- U,) = 0 

u, = IA;, R*=U;+U;, a= 1,2 
(I.71 

Expressions have been obtained in the same approximation for the change in entropy in quasi- 
transverse shock waves and for the velocity of the shock wave 

[S]O = - &o(r2 - R2)ii2, pow; - f f &Cup 4 = 0 (1.8) 

where 

Do(ur, u2) = -Qr2- R2 + W,u, + U2u2 t 

+-1_ g .&* C ,((u, - &I2 - (u2 - u,>*> + 2(U,(u, - U,) i U2(u2 - U,>J2 
11 

-2 = ((zq - lq2 + (u2 - u*))2 U 

We must substitute into these expressions values of u1 and u2 which satisfy equality (1.7). The quantity 
[S]’ turned out to be a fourth-order infinitesimal (in a), and hence in the zeroth approximation its effect 
on the properties of the shock adiabatic curve was ignored. This enabled us to consider the first group 
of relations on the discontinuity (1.1) independently of the energy equation (1.2), a consequence of 
which is the first of equalities (1.8). 

The requirements that the entropy should be non-decreasing must be satisfied on the shock waves 

S-S,20 (1.9) 

and also evolution conditions, which impose limitations on the relation between the velocity W of the 
jump and the velocities c% of small perturbations. For waves travelling in the positive direction of the 
x axis, the evolution conditions for quasi-transverse shock waves take the form of two systems of 
inequalities, corresponding to two types of waves 
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Fig. 1 

Fig. 2 

a) c; 5 WI c;, 0 < WI et for slow waves 

b)c,<W, c; 5 w I c; for fast waves 
(1.10) 

Here c; and ci (a = 1, 2) are the velocities of small perturbations in front of and behind the 
discontinuity. 

The simultaneous satisfaction of conditions (1.9) and (1.10) distinguish sections on the shock adiabatic 
curve (1.7) which can be used to construct solutions (the evolution sections). In Fig. 1 the thick curve 
shows the shock adiabatic curve of the zeroth approximation in the plane of shear deformations (ul, 
Us). The state in front of the discontinuity is represented by the ;pointA with coordinates (U,, U,), and 
the dashed curve is a circle on which according to the first equality of (1.8) S = So, where S 3 So inside 
the circle for media with K = 0, and outside the circle for media with K < 0. The letters F, K, E, J, D, 
L and H on the shock adiabatic curve indicate the position of the Jouguet points (at which W = cz), 
which are the boundaries of the evolution sections. Note that both the form of the shock adiabatic curve 
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and the position of the Jouguet points on it do not depend on the sign of K. However, to fix our ideas, 
we will henceforth assume that K > 0. 

In Fig. 2 we show a sample graph of the velocity of the jump IYO in a medium with K > 0 as a function 
of a certain parameter 1, which varies monotonically along the shock adiabatic curve, for the zeroth 
approximation. The Jouguet points F, K, D and L, for the state in front of the discontinuity, lie at the 
intersection of the graph W,(l) with the horizontal lines Cl and CZ. The extremum points of the velocity 
E, .I and H are the Jouguet points for the state behind the discontinuity. The function S(I) also has an 
extremum at the these points [2, 4, 51. The corresponding points are denoted by the same letters in 
Figs 1 and 2. The two points in Fig. 2, representing the initial state, correspond to the point A in 
Fig. 1. 

2. THE FIRST APPROXIMATION, GENERAL FORMULAE 

We will now obtain a refinement of the form of the shock adiabatic curve and the positions of the Jouguet 
points on it for a more complete representation of the elastic potential, while continuing to assume 
that the deformations are not too large. The problem consists of taking into account the next terms of 
the expansion of the elastic potential of the medium @(ur, u2, u3, S) compared with those written in 
relation (1.4). We will put 

Q>=@O+Qj’, @l @CD0 (2.1) 

The function Q” is defined by equality (1.4), while Q’ represents small corrections, the effect of which 
it is required to take into account. We will assume that the strong inequality between a0 and 4rr, 
postulated in (2.1) is also satisfied for the first and second derivatives of these functions. 

To investigate the projection of the shock adiabatic curve onto the ui, u2 plane, we used the third 
(i = 3) equation of (1.1) to eliminate [u3] from the first two. We will write this equation in the form 

b 
i”31 d-f + -b21 = 43, q3 = b@oW2-f) 

V-f? 

The first two (i = I, 2) equations of (1.1) are given in the form 

raH 
i 1 
_ -pow2[u,]=qa, qa=-bu,q3- % P-3) 

The function H is represented by equality (1.6). The left-hand sides of Eqs (2.2) and (2.3) correspond 
to the zeroth approximation. The right-hand sides arise from adding a1 to the function @‘O, and are 
assumed to be small. Instead of [us] and [S] on the right-hand sides we must substitute expressions (1.5) 
and (1.8). In this case qa are functions of the initial state Ur, U,, i7, and So, and also of the coordinates 
u1 and u2, which specify the state behind the discontinuity. In view of the smallness of qa, the quantities 
u1 and u2 in these expressions can be taken from the unperturbed shock adiabatic curve. When 
investigating the shock adiabatic curve, with the state in front of the discontinuity being given, qa are 
functions of the variables u1 and u2, representing the state behind discontinuity. 

Using the smallness of qa, we can linearize the left-hand sides of Eqs (2.3). We obtain 

V+ PoW~~~$~~~ = ~,,bnl~W~ + qa> a, P = 132 
(2.4) H 4 = a2 Hlau,aup 

Here 6u, are the changes in u, which occur due to the fact that the right-hand sides of Eqs (2.3) are 
non-zero, and 6W are the changes in the velocity of the shock wave, which are assumed to be a small 
arbitrary quantity. All the quantities, not indicated by the symbol 6, are assumed to be known from the 
zeroth approximation. 

The position and form of the shock adiabatic curve in the ul, u2 plane for the refined model can 
be represented using the displacement vector &I of points of the shock adiabatic curve of the zeroth 
approximation. The displacement of the points 6u can be considered as the sum of two vectors 
8u(*) f &I(~) which originate from the two terms on the right-hand side of Eq. (2.4). 
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If we put qa = 0 in these equations, the difference 6u, from zero is due solely to the change in 
W2 along the shock adiabatic curve of the zeroth approximation. In this case the vector &I = 6~~‘) turns 
out to be tangential to this shock adiabatic curve, and its components 6~:) are found from the equations 

(Hap - pow26,p,su;’ = Pobal~W2 (2.5) 

If 6W2 = 0 we obtain 6u = 6u(*). The displacement 6m2) of the points of the shock adiabatic curve, 
corresponding to the same values of W (i.e. when SW2 =‘O), can be found from the equations 

(IF&p - w26,p,sUp) = qa, a = 1,2 (2.6) 

In Eqs (2.4)-(2.6) it is convenient to change to a system of coordinates vi with origin at the point of 
the shock adiabatic curve considered, and with axes parallel to the eigenvectors of the matrix Hap at 
this point (which touch the integral curves of the Riemann waves). Here the components of the vectors 
[u,], I%,, qa are subject to an orthogonal transformation and will be denoted by [u& u,: h, respectively. 
The matrix Hap after the transformation becomes a diagonal matrix with squares of the characteristic 
velocities ct and ci along the principal diagonal. Equations (2.4) take the form 

2 (Cc@- W2)6V, = [u,]6W2+ha, a = 1,2 (2.7) 

Here, on the left-hand side, the number a on the characteristic velocity is taken in brackets in order 
to emphasize that summation is not carried out with respect to this subscript. 

We obtain the vector &I(‘) , tangential to the shock adiabatic curve, when ht = h2 = 0. Its components 
v&” in the new system of coordinates are 

z, = $’ = - [%I SW2 

C$ w2 
, a= 1,2 

When FW2 = 0, we obtain the components ~$2) o the vector 6uC2) 

p ha 
a =2, a=l,2 

Ci-w 

(2.8) 

(2.9) 

At the Jouguet points, where W = c, (c, is the characteristic velocity behind the discontinuity), W 
reaches an extremum. If 6W2 is assumed to be proportional to the change in W* along a certain length 
dZ of the shock adiabatic curve, then ci- W2 and 6W2 will simultaneously change sign on passing through 
a Jouguet point. We can normalize the tangential vector ‘t so that 1 T ) = 1, by choosing an appropriate 
value of 1 6W2 1 (which will not be small when far from the Jouguet points). 

In order to investigate on what side of the shock adiabatic curve of the zeroth approximation the 
refined shock adiabatic curve lies, we will write the vector product of the vectors (2.9) and (2.8) (which 
is directed along the u3 axis) 

(Y(*) x 2)s = (h x [VI), 6W2 
2 

(cl - W2)(ci - W2) 
(2.10) 

If we assume that the sign of SW2 is the same as the sign of the increment of W* when one moves 
along the shock adiabatic curve in a certain direction, then, according to the above, the sign of the 
coefficient of the vector product of the vectors h and v will not change on crossing Jouguet points. Hence, 
the sign of the vector product (2.10) is determined by the sign of the vector product h x [v]. The latter 
can also be written in the original system of coordinates 

p,,(h x [VI), = (q x [ul>, = q,kuzl -dull (2.11) 

Expression (2.11) vanishes at points of intersection of the “old” and refined shock adiabatic curves. 
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We will obtain the change in the position of the Jouguet point. This important since the Jouguet points 
are the ends of the evolution sections of the shock adiabatic curve. If the Jouguet condition is satisfied 
in front of the discontinuity, i.e. W2 = (cJ2, 
for the Jouguet points will be found from Eq. 

we can separately calculate the change So, while Fup 
(2.4), where we put FW2 = F(c$. In the variable V, the 

result can be represented in the form 

v, = 
h, + c u,16(c,)2 

& w2 
(2.12) 

We will now consider the changes in the shock adiabatic curve near the Jouguet points, at which W 
reaches its extremum values W = c,’ = c,, and also the change in the position of the Jouguet point 
itself. Eliminating W2 from Eqs (2.3), we obtain a new equation of the shock adiabatic curve 

and a new relation for W’ 

PoW2-s + QJU,, f42) = ev Q = PO 
4,lu,l -q21u21 

bq12+b212 

(2.13) 

(2.14) 

Equations (2.13) and (2.14) only differ in their right-hand sides from the corresponding equations 
of the zeroth approximation. 

At the Jouguet point of the zeroth approximation with respect to the state behind the discontinuity, 
where W. = co, the shock adiabatic curve touches the integral Riemann wave curve, and hence the 
coordinate axes v1 and uz introduced above are directed along the tangent and the normal to the shock 
adiabatic curve at this point, respectively. Since at the Jouguet point considered W. has an extremum, 
the derivative of the function Do(ul., 2~~) with respect to r+ is equal to zero. This enables us, in the 
neighbourhood of a Jouguet point of the zeroth approximation, to represent the equation of the shock 
adiabatic curve (1.7) and the expression for the velocity of the discontinuity respectively in the form 

TV,+ :BV~ = 0, poW2-poWi = av2+ kbv: 

Mere, A, B and a, b are the values of the corresponding derivatives of the functions So and Do, and W, 
is the value of the velocity at the Jouguet point in the zeroth approximation. In this case Eqs (2.13) 
and (2.14) which take small additional terms into account, will have the form 

Av,+iBvf+Cv,+P = 0, poW2-poWi = av2+ ;bvf+cv, +Q 
(2.15) 

C = &%h,, C = aQ/au, 

The quantities C, c, P and Q are small quantities, taken at the Jouguet point of the zeroth approxi- 
mation. Coefficients, which are non-zero in the zeroth approximation, but which are not small, remain 
without change. Expressing y from the first equation of (2.15) and substituting into the second, we 
obtain 

v 2 = -1 P+!Bv2+Cv 
( A 2’ ’ 

poW2-pow; = Q- $+(c-;c)t+ +;(,-p)v: 

(2.16) 

The first equation of (2.16) is a more accurate equation of the shock adiabatic curve, while the second 
gives the values of Win it. The position of the Jouguet point corresponds to the extremum of W2. Its 
coordinates in the approximation used are 

v2 = -$, cA-Ca 
VI=-- (2.17) 
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3. THE EFFECT OF A CHANGE IN ENTROPY 

In the non-linear theory of elasticity, a model is often used [6] in which, in addition to the zeroth 
approximation employed above in the expression for the elastic potential a’, terms with products of 
the deformations and the change in entropy and also a term with a quadratic change in the entropy 
are taken into account, i.e. 

Such a refinement, for example, is required for rubber-type materials, in which the elastic deformations 
due to a change in entropy (temperature), may turn out to be comparable with the deformations from 
external forces [7]. At the same time, the incompressibility condition is satisfied for similar materials, 
which is also used below. For one-dimensional motions, the incompressibility condition reduces to the 
equality u3 = const = 0, so that there are no longitudinal waves. In this case each of the invariants 1, 
and 1. of the deformation tensor, with the relative accuracy assumed, is proportional to the expression 
u2 = ~4; + u$ Hence, the elastic potential of the zeroth approximation can be represented by expression 
(1.6) while the refining correction (Di has the form 

a, = poToYr2(S - S,) + p(S - so)2 (3.2) 

To clarify the meaning of the coefficients we note that the thermodynamic identity T = aU/aS (where 
U = @/po), using expressions (3.1) and (3.2), gives 

T = T,[ 1 + yr2] + 2P(S - S,)/p, (3.3) 

It can be seen from this equality that in an adiabatic process (S = const) the quantity y determines 
the dependence of the temperature on the formation, and also the temperature dependence of the 
stresses, since &D/&i are the stresses on an area normal to the x axis. We will further assume that 
y > 0, which is observed in rubber at fairly low temperatures. Since, for constant deformation, the heat 
flux dQ = c,dT, where c, is the heat capacity where Ui = cons& and dQ = TdS, we obtain dT = (T/c,)dS. 
On the other hand, differentiating Eq. (3.3) with ui = const, we obtain dT = (2@po)dS, whence it can 
be seen that the coefficient p is determined by the heat capacity for constant deformation 

P = PJo42C,) 

Obviously p >O. 
For the model employed, linearization about the zeroth approximation enables the shock adiabatic 

curve to be obtained as well as refining corrections to the velocity of the jump Wand to the jump in 
entropy S - So in explicit form. 

In the case considered 

qa = -2yp,T,(S- So)u,, c1 = 1,2 

and Eqs (2.3) take the form 

[aH/au,] - poW2( UQ - U,) = -2YPoT& - S.+,, a= 1,2 

Eliminating W, we obtain the equation of the shock adiabatic curve (2.13), in the form 

SO(Ui, $> = p, p = 2YPoTo~-‘(s- w~lE4-~,C41) 

(3.4) 

(3.5) 

(3.6) 

Unlike the zeroth approximation, in which So = 0, the form of the shock adiabatic curve now also 
depends on the change in entropy. For the quantity S - So on the right-hand side of Eq. (3.6) we can 
use expression (1.8) from the zeroth approximation. We obtain 

J’ = -'/2yC12(r2-R2)(U,~2-U2~I) (3.7) 
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Then the refined shock adiabatic curve is represented by the dependence on only the shear deform- 
ations u1 and u2 

BZ$QO-P = 0 (3.8) 

It is shown by the thin curve in the same phase plane ul, u2 in Fig. 1. Both curves B0 = 0 and 3 = 0, 
constructed for the initial state Ui, Cl,, have the same asymptote and intersect one another at points 
which are symmetrical with respect to the initial point about the u1 and u2 axes. The mutual position 
of the two curves can be explained using the general rules of Section 2, But, for this special case, when 
the explicit form of the equations of both curves is known, it is easier to do this by comparing the mutual 
position of the points of intersection of these curves with the coordinate axes u1 and u2. Here we note 
that when T/K < 0, the new shock adiabatic curve has additional branches, but they are outside the limits 
due to the assumption that u, is small. 

The velocity W of the discontinuity can be found from the conditions on the discontinuity (3.5) 

To calculate the change in entropy on the jump we have the equation 

p()To(S-S,) + 1 /4 K(r 
2 2 -2 -R )u = -YPoTdS--s*xu,u, + U&+ p(s-s,,2 

When the left-hand side is equal to zero, this corresponds to the zeroth approximation (1.8), and 
the right-hand side corresponds to the refining corrections. Linearization with respect to S - & gives 
a more accurate expression for the change in entropy in the shock wave 

s-s, = -___ 4T!po(r2- R2)ii2 1 1 
0 

-‘+(U,U, + U,U,) 1 
1 

(3.10) 

As also in the zeroth approximation, S = So on the circle passing through the initial point (Ui, U$!, 
with centre at the origin of coordinates (it is represented by the dashed curve in Fig. 1). In the region 
of variation of u, assumed, the expression in braces in (3.10) does not change sign, and the states behind 
the discontinuity satisfy the condition for the entropy to increase. These states lie inside the entropy 
circle ? = R2 for a medium with K > 0 and outside this circle for media with K < 0. The coefficient p 
does not occur in the expression for S - So. 

The temperature behind the jump is found from the condition T = (S@/iAQ, = COnSt. We have 

T-T, 
_I = y(r2 - R2) + 2p(S - So) = W(r* - R*)(yp,k- pii2) 

TO 

The term with y corresponds to the adiabatic change in temperature, while the term with p corresponds 
to the change in temperature due to the jump in entropy. 

For the evolution sections on the shock adiabatic curve, defined by conditions (l.lO), we will investigate 
how their ends - the Jouguet points F, K, L and D, are shifted in the state in front of the jump (IV = cd 
(Fig. 1) with respect to their position in the zeroth approximation. Since 6~; = 0 in the case considered, 
when finding the displacement ua of these Jouguet points we must assume 6W2 = 0 and use formulae 
(2.9). We recall that the components iv,} are measured from the point considered on the zeroth shock 
adiabatic curve along the tangent to the integral curve of the Riemann waves passing through this point. 
Two families of integral curves are represented by ovals, symmetrical about the ul, u2 axes, elongated 
along the u2 axis, and the lines, orthogonal to them, and converting into rays at infinity [S]. As can be 
seen from formulae (3.4) the vector 4 = {qa} is directed along the radius vector U, on the side of the 
origin of coordinates (since we have assumed y > 0). Knowing the orientation of the vector q with respect 
to the u, axis, we can state the signs of the components h, in formula (2.9). The signs of the denominator 
in this formula are determined by the evolution conditions (1.10). It follows from these that [2] 

WF<C, <cz, c, < WK<cz, C] <c2< wL’* (3.11) 
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Fig. 3 

We will show, as an example, how one can determine the direction of the displacement, i.e. the signs 
of the components V, for Jouguet point F, representing the end of the evolution section of slow shock 
waves when K > 0. In Fig. 3 we show, on an enlarged scale, the neighbourhood of the point F of the ul, 
u2 plane (Fig. 1). As before, the thick curve represents the part of the shock adiabatic curve of the zeroth 
approximation, the thin curve represents part of the refined shock adiabatic curve, while the dashed 
lines represent the elements of the integral curves of the Riemann waves, along the tangent to which 
at the point F the coordinate axes V, are directed. Obviously, at the point F the vector CJ has components 
h[ < 0, h: c; 0. Taking into account the signs of the numerators in (2.9), in accordance with inequalities 
(3.11), we obtain ~1” < 0, u[ < 0, which defines qualitatively the position of the point F’ on the refined 
shock adiabatic curve. Similarly, we obtain for the other Jouguet points 

hY<O, h$O, &<O, h$O, hY<O, hf<O 

The displaced points K’, L’ and D’ are indicated in Fig. 1. The position of these Jouguet points in 
the zeroth approximation and in the refined case can also be found numerically, using IV = c, to 
determine them. The expression for Wis given by formula (3.9). The characteristic velocities are found 
by the standard method [l] 

For the zeroth approximation 

2 0 
Po(C*,2) = f - +u: + u:) rf: ~24: + g)2 + 4+:) 

For the additional term @r of the elastic potential we have 

@;I = ai2 = 2yp,T,(s-s,), @)i2 = 0 

and, consequently, the refined expressions for the characteristic velocities have the form 

0 
c, = (c,, , c; = (c%)* + ‘LypoT,(S - So) 

In the phase plane ul, u2, the intersection of the shock adiabatic curve so = 0 with the line v = ci 
gives the Jourguet points F, K and D, while the intersection with the line W” = c; gives the point L. 
The new positions of the corresponding points F’, K’, D’ and L’ are found from the intersection of the 
shock adiabatic curve 3 = 0 with the lines W = c&(cx = 1,2). Numerical results confirm the qualitative 
conclusions reached above. 

It is extremely difficult to investigate the displacements of the Jouguet points E, J and H with respect 
to the state behind the jump (W = cz) using formulae (2.15)-(2.17). Hence, for these points we 
immediately use the numerical method proposed above. The points E’, J’ and H’ obtained in this way 
are shown in Fig. 1. 
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